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Abstract. Previously unaccessible plasma states of matter can be produced by irradiation with powerful
lasers. The interactions within the plasma shift and distort the spectral lines corresponding to radiative
transitions. The shape of the spectra is determined by two frequencies characterizing the fluctuations of
the electric microfield in the plasma and the Stark splitting of the lines. Traditionally the fluctuations due
to the motion of the ions are considered as sufficiently slow and weak to be treated in a linear quasi-static
approximation, while the electrons are accounted for in an instantaneous impact approximation. Here also
the intermediate regimes and strongly correlated ions are investigated. For that purpose the microfield
fluctuations are calculated by molecular dynamics computer simulations. They are then used as input in
a numerical solution of the time-dependent Schrödinger equation for the radiating electron. The shape of
the Lyα–line in H and in Al is investigated in the intermediate regime. The calculations are in agreement
with recent experiments on the Lyα and Lyγ lines in Al.

PACS. 32.30.Rj X-ray spectra – 32.70.Jz Line shapes, widths, and shifts – 52.25.Os Emission, absorption,
and scattering of electromagnetic radiation – 52.65.Yy Molecular dynamics methods

1 Introduction

Due to the rapid progress of technology [1] previously un-
accessible states of matter can be investigated by irradia-
tion with powerful lasers. A few typical examples are: The
compression of deuterium pellets for inertial fusion [2,3]
and shock wave experiments to investigate possible phase
transitions like the metalization of hydrogen [4], which are
not only of large fundamental interest [5] but also impor-
tant for astrophysical problems like the structure of the
giant planets [6]. Such experiments require typically large
lasers delivering pulses with PW power for 10−12...−9 s.
On the other hand femtosecond–table–top lasers deliver
intensities beyond 1018 W/cm2 on targets where the self-
amplification of the electromagnetic fields by charge sep-
aration has been successfully exploited for the generation
of particle jets [7]. The extreme plasma states created in
the target after the laser irradiation can be analyzed spec-
troscopically [8] and the dynamics can be monitored in a
time-resolved manner [9].

In comparison to isolated atoms or ions the inter-
actions within a plasma shift and distort the spectral
lines corresponding to radiative transitions. Spectroscopy
is therefore a tool to diagnose the state of a plasma. Of
particular importance are the fluctuations of the electric
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microfield �E(t). For the shape of the spectral lines two fre-
quencies are important: a field frequency ω0 = |Ė(t)/E|
characterizing the fluctuations of the perturbing field and
the splitting of spectral lines ∆ω due to the Stark ef-
fect. The calculation of line shapes is facilitated by ap-
proximations which are valid in complementary extreme
regimes [10]. If the shortest time scale is set by ω0, the
radiator is perturbed by a set of instantaneous collisions
which need not be further resolved in time. This impact
approximation is often valid to describe the perturbations
due to swiftly moving plasma electrons. However, if the
shortest time scale is set by ∆ω, it is only the probability
distribution P (E) of the electric field which matters. This
quasi-static approximation is usually employed to account
for the influence of the heavier, slowly moving plasma ions.
Moreover, if the electric microfields are sufficiently weak,
both P (E) and the Stark splitting ∆ω can be calculated
perturbatively.

In the intermediate regime approximations have been
proposed which generally involve severe assumptions and
idealizations, they should therefore be regarded as model
calculations. The hopes for a truly unified and prac-
tical theory were considered as dim [10]. Nevertheless
progress has been made by treating the effect of the
ions on the radiator in an effective independent-particle
model (APEX) [11–13] as well as the Coulomb interac-
tion between the electrons and the radiator beyond the
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dipole term [14]. These methods were applied to highly
charged Ar ions in D plasmas [14–16]. In the present pa-
per we want to study even stronger coupled systems, e.g.
highly charged radiators in plasmas with highly charged
ions. For that purpose we perform numerical simulations
which cover a wide range of plasma densities and tem-
peratures accessible in present experiments or in the near
future. The simulations span the entire range between the
impact and the quasi-static approximations. We explicitly
solve the time-dependent Schrödinger equation for the ra-
diator in the fluctuating microfield due to the other plasma
particles. As we want to account for strong correlations in
the plasma, the field fluctuations are obtained from molec-
ular dynamics (MD) simulations.

The paper is organized as follows: in Section 2 we de-
scribe the radiating ion and its coupling to the radiation
field and the external electric field. For pedagogical pur-
pose we discuss the variation of the line shape under the
influence of a harmonic field characterized by a variable,
but fixed single frequency ω0 first. We then present the cal-
culation of the actual fluctuating microfield by MD simu-
lations. In Section 3 we test the validity of the quasi-static
and impact approximations and calculate the shape of the
Lyα–lines in hydrogen and aluminium for a wide range of
plasma densities and temperatures from weakly to very
strongly coupled plasmas. We compare our calculations in
Section 4 with recent experiments performed in Jena [17]
and in Garching [18–20]. This leads to the conclusion that
the traditional approximations, impact for the electrons
and quasi-static for the ions, cease to be valid for the
plasma states already reached in the present experiments
(see Sect. 5). The intermediate strongly coupled regime
will become even more important for the planned free-
electron-laser (X)FEL facilities.

2 Radiating hydrogen-like ions in fluctuating
electric microfields

In this section we describe the solution of the wave
equation for a hydrogen-like ion coupled to the radia-
tion field and to a time-dependent external electric field.
As an example we study the transition from the impact
to the quasi-state regime for the Lyα–line in an oscilla-
tory monochromatic field. The actual fluctuations in the
plasma are calculated by MD simulations.

2.1 Wave equation for a radiating, hydrogen-like ion
in a time-dependent electric field

We first consider a one-electron ion in the radiation field
and an external time-dependent electric field. The Hamil-
tonian is the sum of Ha describing the unperturbed ion.
Hγ for the free radiation field, Hi describing the interac-
tion between the electron and the radiation field and a
dipole term e�x · �E(t) for the interaction between the elec-
tron (charge −e, distance �x from nucleus) and the external
field �E(t)

H = Hγ + Ha + Hi + e�x · �E(t). (2.1)

The individual terms have the following structure:

(i) the radiation field consists of modes |λ〉 with frequen-
cies ωλ which are created and annihilated by opera-
tors b+

λ and bλ, respectively,

Hγ =
∑

λ

�ωλb+
λ bλ; (2.2)

(ii) the electron with mass me moves in the potential of
a nucleus with charge Ze. In the present application
it turns out that it suffices to start from the non-
relativistic Schrödinger equation

Ha|k〉 =
(

�p 2

2me
− Ze2

|�x|
)
|k〉 = �ωk|k〉 (2.3)

for the electron state |k〉 with energy �ωk. Here �p is
the momentum operator and k is a multi-index in-
cluding radial, angular momentum and spin quan-
tum numbers. The present calculations are done in
the configuration space corresponding to the solu-
tions of equation (2.3). In order to discretize the con-
tinuum a boundary condition 〈�x|k〉 = 0 is imposed
at a radius x = R, which is chosen sufficiently large
in order not to influence the final results. The ra-
dial wave functions with this boundary condition are
still confluent hypergeometric functions, but the ra-
dial quantum numbers of bound states are not inte-
gers any more [21]. In order to obtain a finite basis the
(former) continuum states are cut off at sufficiently
large quantum numbers. Alternatively the continuum
could be handled by forming wave packets with a
width that must be adjusted appropriately [22]. We
have also solved the time-dependent equation (2.1)
on a grid for the electron wave function 〈�x|k〉 [23,
24]. This has not only advantages for the description
of the continuum but is also easier to implement in-
teractions between the radiator and the plasma par-
ticles beyond the dipole term in equation (2.1). On
the other hand spatially extended states require very
large simulation boxes. Quite generally in the present
context we found the solution on the grid more expen-
sive numerically than working in configuration space
and adopted the latter for the subsequent calcula-
tions.
At high Z relativistic corrections must be considered
and also the spin should be treated as a dynamical
variable. It turns out that in the cases considered
here it suffices to include the first-order fine-structure
shift [25]

∆E =




− |En|α2Z2

n

(
1

l+ 1
2
− 3

4n

)
l > 0

− |En|α2Z2

n

(
1 − 3

4n

)
l = 0

. (2.4)

Here n is the principal quantum number of the
hydrogen-like ion, En the corresponding energy, l
the orbital angular momentum quantum number and
α ≈ 1/137 the Sommerfeld constant;
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(iii) the interaction with the radiation field results from
the minimal substitution �p → �P +e �A in Ha. In dipole
approximation the interaction describing the emis-
sion of radiation is

Hi =
ie

�
[Ha, �x] ·

∑
λ

b+
λ

√
�

2ωλε0V
�eλ. (2.5)

Here ε0 is the permittivity of the vacuum, V a nor-
malization volume and �eλ a polarization vector and
the absorption of photons from the radiation field has
been dropped here from the model, we remind that
we wish to study the state of the plasma after the
irradiating laser has been switched off.

2.2 The emission of radiation and the power spectrum
of the dipole operator

The interaction e�x · �E(t) between the radiator and the
plasma is time-dependent and possibly strong. Going be-
yond the second order treatment of reference [14] we use
the interaction picture with the unperturbed basis states

(Ha + Hγ)|k〉 = �(ωk + ωλ)|k, λ〉 = �ωk,λ|k, λ〉. (2.6)

The total wave function is

|Ψ(t)〉 =
∑
k,λ

ck,λ(t)e−iωk,λt|k, λ〉 (2.7)

where the expansion coefficients ck,λ(t) describe the non-
trivial time dependence according to the system of equa-
tions

i�ċk,λ(t) =
∑
k′,λ′

ei(ωk,λ−ωk′,λ′ )tck′,λ′(t)

× 〈k, λ|Hi + e�x · �E(t)|k′, λ′〉. (2.8)

The transition rate per unit energy interval for the emis-
sion of unpolarized photons is then

PQ(�ωλ) =
e2ωλ

6π2c3ε0�2

× lim
T→∞

1
T

∑
k′

∣∣∣∣∣∣
T∫

0

dt
∑

k

ei(ωk′,λ−ωk,0)t

×ck,0(t)(ωk′ − ωk)〈k′|�x|k〉|2 . (2.9)

The evaluation of PQ requires the solution of the quantum
equations of motion (QEOM), (2.8) in the product space
of radiator states and photon modes. Instead we will of-
ten use in the applications below a simplified and more
economical approach which rests on the power spectrum
of the dipole operator. It is defined as the square of the
absolute value of the Fourier transform of the expecta-
tion value of the dipole operator. Normalizing as above

we introduce

PD(�ωλ) =
e2ω3

λ

3πc3ε0�2
lim

T→∞
1
T

∣∣∣∣∣∣
1√
2π

T∫
0

eiωλt �d(t)dt

∣∣∣∣∣∣
2

(2.10)
with the dipole moment

�d(t) =
∑
k′,k

ei(ωk′−ωk)tc∗k′(t)ck(t)〈k′|�x|k〉. (2.11)

Here ck(t) are the expansion coefficients for the solutions∑
k

ck(t)|k〉 of the ion in the fluctuating field, i.e. the Hamil-

tonian Ha + e�x · �E(t). In the interaction picture these co-
efficients are obtained from the system

i�ċk(t) =
∑
k′

ei(ωk−ωk′)tck′ (t)〈k|e�x · �E(t)|k′〉. (2.12)

Let us now consider a transition k → k′ = g downwards
to a state |g〉 which is nearly filled, i.e. ck′ = δk′,g. Then
the dipole moment in equation (2.11) is calculated with
respect to the state |g〉 and

PD(�ωλ) =
e2ω3

λ

6π2c3ε0�2
lim

T→∞
1
T

∣∣∣∣∣∣
T∫

0

dt
∑

k

ei(ωg+ωλ−ωk)t

×ck(t)〈g|�x|k〉|2 . (2.13)

Under the same assumptions one obtains from the expres-
sion (2.9)

PQ(�ωλ) =
e2ωλ

6π2c3ε0�2
lim

T→∞
1
T

∣∣∣∣∣∣
T∫

0

dt
∑

k

ei(ωg+ωλ−ωk)t

×ck(t)(ωg − ωk)〈g|�x|k〉|2 . (2.14)

For sufficiently weak perturbations the width of the line is
small, so that we may replace ωg −ωk by −ωλ outside the
oscillating factor. So both expressions (2.13) and (2.14)
agree.

Of course the total radiated power is underestimated
for excited radiators where |cg|2 < 1. This can be compen-
sated by dividing through the time-averaged occupation
probability of the lower state

PD(�ωλ) → PD(�ωλ)
〈|cg(t)|2〉t . (2.15)

Most of the subsequent calculations will be done in this
dipole power spectrum approximation (DPSA). We will
show the validity of this approximation by comparing ex-
plicitly PD and PQ from the QEOM in Section 3. The
DPSA is justified as the emission of radiation through the
interaction Hi changes the occupation probabilities of the
radiator’s states on a much slower scale than the fluctu-
ating fields.
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2.3 A radiator in a monochromatic external field

Before embedding the radiating ion in a plasma it seems
worthwhile to study the influence of an external field

E = E0 sin ω0t (2.16)

oscillating with a single frequency ω0 on the structure of
the spectral lines of the radiator. Such a model calculation
exhibits the transition from the quasi-static regime ∆ω �
ω0, where the structure of a line is determined by the
distribution

P (E) = (πE0)−1(1 − (E/E0)2)−1/2 (2.17)

of the electric field (2.16) to the frequency dominated
regime ω0 � ∆ω. Here

∆ω = 3aZeE0/� (2.18)

is the Lyα Stark shift with aZ = a0/Z and a0 =
4πε0�

2/(mee
2) is the Bohr radius. We show in Figure 1

results for the Lyα–transition from the occupied 2p- to the
unoccupied 1s-level. The unperturbed transition energy is
�ωLyα

= (3/8)Z2e2/(4πε0a0) ≈ 10.2 eV for hydrogen. An
iterative solution of equation (2.8) starting from the zero-
order case c2p(t) = 1 corresponding to a line at the Lyα

frequency shows for each iteration step n the appearance
of an extra pair of side lines at ±nω0. With decreasing ω0

more and more strength is distributed among more and
more side lines, until the probability distribution (2.17)
emerges as an envelope in the quasi-static limit.

2.4 MD simulations of plasma microfields

A one-component plasma (OCP) of particles with charge q
is in equilibrium completely described by the coupling
(plasma) parameter

Γ =
q2

4πε0akBT
, (2.19)

which is the ratio of the pair potential energy and the
thermal energy β−1 = kBT of the particles. Here the mean
distance a between the particles (Wigner-Seitz radius) is
connected to the particle density n by

a = (3/(4πn))
1
3 . (2.20)

A collective length scale is given by the Debye shielding
radius

λD = (ε0kBT/q2n)
1
2 = a(3Γ )−

1
2 . (2.21)

With the thermal velocity vth = (kBT/m)
1
2 of particles of

mass m one obtains the plasma frequency

ωp = vth/λD = (q2n/(ε0m))
1
2 (2.22)

which sets the collective time scale ω−1
p . The plasma

can be described classically if the thermal wave length
is smaller than the mean distance a

λth = (2π�
2/(mkBT ))

1
2 � a. (2.23)
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Fig. 1. The emission of the Lyα radiation in an oscillating field
with amplitude E0 = 10−3e/(4πε0a

2
0) in DPSA (solid curves).

The ratio of the Stark shift ∆ω to the oscillation frequency ω0

is 2, 0.3 and 0.005 in the top, center, and bottom panels, respec-
tively. The dashed curve in the bottom panel is the quasi-static
distribution (2.17).

Or, equivalently, the degeneracy parameter Θ, i.e. the ra-
tio of the thermal energy and the Fermi energy EF must
fulfill

Θ = kBT/EF =
2mkBT

�2(3π2n)2/3
= 4π

(
4
9π

)2/5 (
a

λth

)2

�1.

(2.24)
For a nonrelativistic treatment the thermal energy of the
particles must be smaller than their rest energy

kBT/(mc2) � 1. (2.25)

We consider hydrogen-like ions as radiators in a com-
pletely ionized plasma. Due to their large mass ratio the



J. Marten and C. Toepffer: Microfield fluctuations and radiative transitions in strongly coupled plasmas 401

1e+10 1e+12 1e+14 1e+16 1e+18 1e+20 1e+22 1e+24 1e+26 1e+28 1e+30

n
i
  (cm

-3
)

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

k B
T

  (
eV

)

Γ=0.01

Γ=1

Γ=100

k
B
T/m

i
c

2
=0.1

Θ=100
Θ=10

a/a
Z
=10

k
B
T/m

i
c

2
=0.01

a/a
Z
=1

1e+10 1e+12 1e+14 1e+16 1e+18 1e+20 1e+22 1e+24 1e+26 1e+28 1e+30

n
e
  (cm

-3
)

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

k B
T

  (
eV

)

k
B
T/m

e
c

2
 = 0.1

k
B
T/m

e
c

2
 = 0.01

Θ=100
Θ=10

Γ=0.01

Γ=1

Γ=100

a/a
Z
=10 a/a

Z
=1

Fig. 2. Areas of validity of the classical nonrelativistic descrip-
tion and working points of the experiments [17,20] (crosses) in
the density-temperature (n− kBT ) plane. The horizontal solid
lines show limits for the nonrelativistic description, the verti-
cal dotted lines limits for the dipole approximation. The other
dotted lines limit areas of coupling parameters Γ (2.19) and
degeneracy parameters Θ (2.24). Upper panel: Al13+, lower
panel: electrons.

electrons and the ions move on very different timescales.
We will show below that this allows to model the ac-
tual plasma as a superposition of two OCP’s for the elec-
trons (e) and the ions (i). As we want to compare with
experiments on Al-plasmas later, we show in Figure 2 ar-
eas of validity for a classical nonrelativistic description of
an Al13+ OCP in the n−kBT plane. Also shown are verti-
cal lines limiting the validity of the dipole approximation
for plasma-radiator interaction used in equation (2.1). For
that purpose the mean distance a between the particles
must be larger than the atomic length scale aZ .

As discussed above the distribution of the electric mi-
crofield P (E) plays a central role for the line shape. Mod-
els for this distribution exist in the limits of an ideal
plasma [26], a weakly coupled plasma [27] and for very
strongly coupled plasmas [28]. For intermediate cases an
effective independent-particle model (APEX) has been de-
veloped [11–13]. It rests essentially on the pair distribution
function and has been tested by comparison with molecu-
lar dynamics (MD) and Monte-Carlo simulations. In order
to cover the entire range from small to large plasma pa-
rameters we use here classical molecular dynamics (MD)
simulations which have been described in detail some-
where else [29]. As an example we show in Figure 3 for
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Fig. 3. Distributions for the electric microfield for values of
the plasma parameters Γ = 0.001 . . . 100 and the Holtsmark
distribution. Upper panel for neutral reference points, lower
panel for charged reference points.

an OCP the distributions P (E/EH) as function of the
electric field scaled in units of the Holtsmark field

EH = (8π/25)
1
3 Ze/(4πε0a

2). (2.26)

These distributions were obtained from ensembles of fields
taken at charged reference points (i.e. a plasma particle).
The coupling parameters range from Γ = 100 to nearly
ideal Γ = 0.001. It should be noted that the Holtsmark
limit Γ → 0 can only be reproduced by increasing the
size of simulation box beyond any finite limit because of
equation (2.21). As the thermal motion of the particles
is suppressed with increased coupling the distributions
P (E/EH) and the mean electric fields are shifted towards
smaller values.

In principle a plasma consisting of several components
should be simulated: the plasma ions, the electrons and
the radiators. However, unless the coupling becomes very
strong and many bound states are formed, the electrons
and ions remain poorly correlated in time. This has the
consequence that the dynamics of the microfield fluctu-
ations does not depend very much on the spatial corre-
lations between the ions and the electrons. For that pur-
pose we compare power spectra |E(ω)|2 of the electric field
obtained from simulations of a two-component plasma
(TCP) [30] with corresponding OCP results. As shown
in Figure 4 the power spectra have a small peak near the
electronic plasma frequency ωp,e, but they are dominated
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Fig. 4. Normalized power spectra of electric fields at a pro-
ton as function of the frequency scaled by the plasma fre-
quency (2.22) of the ions. Solid curve TCP and full diamonds
OCP at Γ = 0.5, dashed curve TCP and open circles OCP
at Γ = 1.0, dashed-dotted curve TCP and full circles OCP at
Γ = 2.0, dashed-double-dotted curve TCP and open diamonds
OCP at Γ = 4.0.

by a peak about the ionic (here protonic) plasma fre-
quency ωp,i. In later applications to experiments [17,20]
the frequency range ω0 = (2 ÷ 5)ωp,i on the right flank
of the ionic peak will be relevant in which the TCP spec-
trum is well reproduced by the ion OCP. For reasons of
numerical economy we will subsequently consider a super-
position of the two OCP’s, one for the ions and one for
the electrons. The radiator is then considered to be at a
charged reference point with respect to the ions, while it is
put at a neutral reference point with respect to the faster
moving and less correlated electrons. The time-dependent
equations describing the coupling of the microfield to the
radiator are then solved for an ensemble of typically thirty
independent microfields. This yields finally the mean emis-
sion as well as the statistical error (mean error of the
mean). Whenever graphically possible we have shown this
error as bars in our figures.

2.5 Master equation for the coupling between radiator
and plasma

At this stage we have neglected the feedback of the radia-
tor’s excitation to the plasma. In this respect the plasma
particles move as if they had an infinite mass. As they have
a finite velocity it appears as if the radiating electron is
embedded in a plasma of infinite temperature. Accord-
ingly the time evolution of the total system will lead to
an equal population of all electronic states. As the time-
dependent feedback could be implemented only at a very
great expense in the MD simulations we enforce a canoni-
cal equilibrium state of the plasma and the radiating elec-
tron by modifying the interaction in equation (2.12) ac-
cording to

e�x · �E(t) → e−βHa/2e�x · �E(t)eβHa/2. (2.27)

and similarly in (2.8).

3 Quasi-static and impact approximations

Our description of the emission of radiation as devel-
oped in the previous section rests on the solution of time-
dependent equations of motion (2.8, QEOM) or (2.12,
DPSA) with fluctuating microfields �E(t) obtained from
MD simulations. In the conventional approach one uses
the quasi-static and the impact approximations to account
for the perturbation of the radiator by the plasma ions and
electrons, respectively. In this section we compare these
approximations in their range of validity with our simu-
lations. Unless otherwise stated we use here and in the
following a basis of N ≈ 50 atomic states |k〉 with orbital
angular momenta 0 ≤ l ≤ lmax = 2 and the boundary
condition 〈�x|k〉 = 0 for x = R = 30aZ. The simulations
of the plasma are performed with 300 particles of either
species, e or i.

The characteristic perturbing frequency is related to
the free time of flight of the plasma particles

ω0 = 2π
vth

a
∝ n

1
3 T

1
2 (3.1)

as long as the plasma is moderately coupled. In a strongly
coupled plasma (Γ � 1) the collective plasma mode with
frequency ωp ∝ n

1
2 becomes important and sets the scale

for the perturbation.

3.1 Quasi-static approximation (QSA)

The typical Stark splitting of the Lyα–line is

∆ω =
3aZe〈E〉

�
(3.2)

where

〈E〉 =

∞∫
0

EP (E)dE (3.3)

is the average value of the microfield. In the linear Stark
effect two of the four n = 2 levels remain unaffected while
the electric field shifts two levels by ±∆ω. One expects
therefore a strong central peak and wings which reflect the
distribution P (E). The asymmetry of the line shape is due
to terms beyond the linear Stark effect. With increased
coupling the mean microfield 〈E〉, see Figure 3, and the
Stark splitting (3.2) decrease. This is clearly visible in the
results shown in Figures 5 and 6 for the Lyα–line of Al12+
in an Al13+ plasma at solid state density ρ0 and tempera-
tures kBT = 103 eV and 105 eV, respectively. We note that
the simpler simulation scheme DPSA (2.12) agrees quite
well with more involved QEOM (2.8) except for a possi-
ble underground, see Figure 6. We will therefore employ
the DPSA in the following, while checking and correcting
for an underground with a few QEOM calculations in the
wings of the line. The quasi-static approximation (QSA)
agrees, as expected, with the simulations as soon as the
actual distance from the center of the line becomes larger
than the perturbing frequency. With decreasing tempera-
ture the range of validity increases from the outer wings of
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Fig. 5. The Lyα–line in an Al13+ plasma at ne = 8×1023 cm−3

(solid state density) and kBT = 103 eV. The plasma parameter
is Γ = 1.5, the average value (3.3) of the microfield 〈E〉 =
1.1EH, and the ratio of the characteristic perturbing time (3.2)
to the free time of flight (3.1) is ω0/∆ω = 0.15. The solid curve
is the DPSA, the triangles are the QEOM and the dashed curve
is the QSA.
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Fig. 6. The same as in Figure 5 for kBT = 105 eV, Γ = 0.015,
〈E〉 = 2.5EH and ω0/∆ω = 0.68.

the line inwards. The ratio of the characteristic perturbing
frequency ω0 (3.1) to the Stark splitting ∆ω (3.2) which
should be small for the validity of the QSA, ω0/∆ω � 1,
decreases indeed from the value 0.68 in Figure 6 to a value
0.15 in Figure 5. Quite generally the shape of the lines be-
comes broader with increasing temperature and the width
of the central peak is underestimated by the QSA.

3.2 Impact approximation (IA)

Although the main emphasis of this paper is on slow, cor-
related ions we use the opportunity to test some features
of the impact approximation for swift electrons. Here the
line broadening is due to a statistical perturbation of the
line energy [31]. The perturbing particles moving on rec-
tilinear trajectories exert instantaneous statistically inde-
pendent kicks on the radiator. This smears the energies of
both the upper and the lower level. There results a shifted
Lorentzian line shape with a width ω ∝ nT− 1

2 . The im-
pact approximation involves thus three assumptions:

(i) a radiator subspace consisting of the n = 1, 2 levels
for the Lyα transition;

(ii) the plasma is ideal, i.e. the plasma particles do not
interact with each other, but only with the radiator;
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Fig. 7. Normalized spectra of the Lyα–line of an H atom in
an electron plasma at ne = 2 × 1018 cm−3, kBT = 30 eV,
Γ = 10−2, 〈E〉 = 2.6EH, ω0/∆ω = 79. The solid curve is the
DPSA, the circles are the DPSA′, the squares are the IA′ and
the diamonds are the IA.
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Fig. 8. As Figure 7 for kBT = 0.1 eV, Γ = 3, 〈E〉 = 2.0EH,
ω0/∆ω = 5.9 and ωp/∆ω = 2.8.

(iii) the collisions with the radiator are instantaneous and
statistically independent.

In order to test the IA we will in the following use the
DPSA as described in Section 3 and implement the as-
sumptions (i), (ii) and (iii) step by step. We will call the
restriction (i) to n = 1, 2 subspace the restricted dipole
power spectrum approximation (DPSA′). If, in addition,
the perturbing plasma is treated as ideal but the collisions
with radiator remain resolved in time, as in (ii), we label
the results by IA′. Finally, if the collisions of the plasma
particles with the radiator are instantaneous, with a po-
tential

V (t) = −�K�e · �xδ(t − t0) (3.4)

for random kicks of strength K in direction �e we have
also implemented assumption (i) and thus the IA. The
kicks (3.4) lead to jumps in the radiator wave function in
the subspace

Ψ(t+0 ) = expK�e · �x|Ψ(t−0 )〉. (3.5)

For an explicit example we consider in Figures 7 and 8
a H-atom (neutral reference point) in an electron plasma
which ranges from nearly ideal to moderately correlated.
In the case of the nearly ideal plasma at high temper-
ature, Γ = 10−2, T = 30 eV and ω0/∆ω = 79 shown
in Figure 7 the approximations DPSA′, IA′ and IA agree
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Fig. 9. The Lyα–line of an Al12+ in an electron plasma at
ne = 8 × 1023 cm−3 (solid state density) and kBT = 103 eV,
Γ = 0.022, 〈E〉 = 2.5EH, ω0/∆ω = 83. The triangles are the
QEOM, the solid curve is the DPSA. The squares and the
diamonds are the IA′ and the IA, respectively, both normalized
to the DPSA.
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Fig. 10. As Figure 9 for kBT = 105 eV, Γ = 2.2 × 10−4,
〈E〉 = 2.6EH and ω0/∆ω = 800.

among each other. But the comparison to the broader and
slightly red-shifted peak obtained in the DPSA shows that
the restriction to the n = 1, 2 subspace is not valid here. If
the temperature is lower, T = 0.1 eV, Γ = 3, ω0/∆ω = 5.9
(Fig. 8) on the other hand, it suffices to neglect higher ex-
cited states, but the collisions with the radiator must be
resolved in time and correlations begin to matter: while
the DPSA and DPSA′ agree the simulations with an ideal
plasma give a peak that is too sharp or too broad in the
IA′ and in the IA, respectively.

We will later compare with experiments on Al and
show therefore in Figures 9 and 10 some results for the
Lyα–line of Al12+ in an electron plasma at solid state
density ρ0 for T = 103 eV (Γ = 0.022, ω0/∆ω = 83)
and T = 105 eV (Γ = 2.2 × 10−4, ω0/∆ω = 800). The
QEOM agrees well with DPSA, but as in Figure 7 the re-
striction to the n = 1, 2 subspace inherent in the impulse
approximation IA and in IA′ yields a line shape which is
too sharp. Quite generally the width of the line decreases
with increasing temperature.

3.3 Al spectra in the n−T plane

In this subsection we will put together the results obtained
so far and calculate the shape of the Lyα line of Al12+ in

Table 1. FWHM-contributions (in eV) by the Al13+-ions and
the electrons to the total width of the Lyα–line in Al12+.

kBT (eV)

ne (cm−3) 102 103 104 105

8 × 1022 ions 0.20 0.36 0.80 1.90

electrons 0.37 0.23 0.23 0.18

8 × 1023 ions 0.37 1.10 2.34 5.46

electrons 2.64 1.91 1.06 1.27

8 × 1024 ions 4.46 11.04 84.40

electrons 15.66 11.59 7.70

Table 2. Doppler broadening (FWHM) of the Lyα–line in an
Al plasma.

kBT (eV) 10 102 103 104 105

FWHM (eV) 0.08 0.26 0.81 2.57 8.12

a wide array of plasma parameters see Figure 2. For that
purpose we start from the line as it is broadened by the
Al13+ ions in the plasma. The contribution of the ions to
the total width of the line is given in Table 1. It should
be noted, however, that the FWHM is not sufficient to
characterize the ionic contributions to the line shape, see
Figures 5 and 6. Then we fold with the weighted fine struc-
ture shift (2.4) which is ∆E = 1.29 eV and account for
the Doppler effect [31] which broadens a line with unper-
turbed frequency ω according to a Gaussian distribution

L(∆ω) =
1√
2πσ

exp

(
−1

2

(
∆ω

σ

)2
)

(3.6)

where ∆ω = ω − ω and

σ2 =
kBTω2

mc2
. (3.7)

Finally we fold to account with the broadening due to the
electrons in the plasma, see Table 1.

We discuss now the shape of the Lyα–line and the
contributions of the individual mechanism to the total
width for densities 0.1ρ0 (ne = 8 × 1022 cm−3) and
kBT = 102...5 eV, ρ0 (ne = 8 × 1023 cm−3) and kBT =
102...5 eV, 10ρ0 (ne = 8×1024 cm−3) and kBT = 103...5 eV.
At smaller temperatures the electrons leave the classical
regime, see Figure 2. At ρ = 0.1ρ0 and low temperatures
the total width is dominated by the fine structure with
some additional electronic broadening. At high tempera-
tures the Doppler broadening is most important, see Ta-
ble 2, followed by the ionic contribution. So at this low
density the plasma effects discussed here do not yet influ-
ence the shape of the line very much. This is also visible in
Figure 11 where calculations with the DPSA on one hand
the quasi-static approximation (QSA) for the ions and the
impact approximation (IA) for the electrons on the other
hand are compared.

The individual contributions to the total width at solid
state density ρ0 are listed in Table 1. With increasing tem-
peratures ionic and Doppler broadening become more and
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Fig. 11. Normalized spectra of the Lyα–line in an Al-plasma
at ne = 8 × 1022 cm−3. The solid curves are the DPSA, the
dashed curves result from the QSA for the ions and the IA for
the electrons.

1710 1720 1730 1740 1750
0

0.1

0.2

Y
 (

eV
-1

)

1710 1720 1730 1740 1750
0

0.1

0.2

1710 1720 1730 1740 1750
h- ω  (eV)

0

0.1

0.2

1710 1720 1730 1740 1750
0

0.1

0.2

T = 10
4
 eV

T = 10
2
 eV

T = 10
5
 eV

T = 10
3
 eV

Fig. 12. The same as in Figure 11 for solid state density ne =
8 × 1023 cm−3.

more important. The quality of the approximations IA for
the electrons and QSA for the ions deteriorates with in-
creasing temperature, see Figure 12. The agreement at
T = 102 eV is fortuitous as two errors compensate each
other.

These trends are even better observable at ρ = 10ρ0

(Fig. 13), where the plasma effects dominate, in particular
at high temperatures the ionic broadening with its char-
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Fig. 13. The same as in Figure 11 for ne = 8 × 1024 cm−3.

acteristic wings. Due to the large density the electric fields
become sufficiently strong to cause asymmetric shapes due
to nonlinear coupling.

4 Comparison with experiments

The systematic investigations of the previous section show
that the standard approximations become doubtful if
the plasma density reaches that of the solid state. In
the last years experiments have approached this regime.
In the following we will compare our calculations with
the results of experiments performed in Jena [17] and
in Garching [18–20]. We note that the theoretical mod-
els discussed so far assume a homogeneous equilibrium
plasma. Of course this is not the state in which the laser
leaves the target after the irradiating pulse. In particu-
lar self-absorption due to plasma inhomogeneities leads
to an additional line broadening which is difficult to ana-
lyze. Fortunately there has been considerable experimen-
tal progress to reduce self-absorption [20].

4.1 The Lyγ–line in aluminium at low density

In the analysis of an earlier measurement [17] we will con-
centrate on the Lyγ–line, which is weaker than the Lyα–
and Lyβ–lines and thus less prone to self-absorption. The
weighted Stark splitting is four times larger than for the
Lyα–line (2.18). Here we took into account 30 states of
the radiator with l ≤ 3 and n ≤ 4 and the cutoff radius
has been chosen R = 100aZ in order to accommodate the
spatially extended n = 4 states. The radiators are Al12+
ions which are perturbed by electrons and Al10+ ions. In
this connection we note that the charge of the perturb-
ing ions does not matter very much as ni = ne/Z so that
the smaller charge state is compensated by a higher ion
density [21]. The fine structure and the Doppler broad-
ening are taken into account as described in the previ-
ous section. The influence of the electrons is quite small.
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Fig. 14. Normalized spectra of the Lyγ–line of Al. The solid
curve is the measurement after subtraction of the underground
and a shift to the theoretical value. The simulated curves
(DPSA, kBT = 400 eV) were folded with the experimental
resolution.

The temperature has been estimated independently from
the high frequency part of the total spectrum. We adopt
the value kBT = 400 eV and use our model to deter-
mine the density. For that purpose the experimental un-
derground was subtracted, the position of the line, which
was only measured relative to other lines, was shifted
to the theoretical value and the theoretical profile was
folded with the experimental resolution �∆ω ≈ 0.43 eV.
As shown in Figure 14 this allows to fix the density at
values near ne = 3 × 1021 cm−3. The agreement in the
wings of the line is excellent, the simulation yields some
more structure in the center of the line which is proba-
bly masked by self-absorption. An inspection of Figure 2
shows that the criteria for a classical, nonrelativistic treat-
ment of the plasma and the use of the dipole approxima-
tion in equation (2.1) are fulfilled. The plasma parameter
of the Al10+ ions is Γ = 0.43, the ratio ω0/ωp,i ≈ 6 justi-
fies the calculation of the microfield in a superposition of
OCP’s, see Figure 4. It must be kept in mind, however,
that this example is not yet a stringent test for our simu-
lations as the line profile is still dominated by the Doppler
broadening at this low density.

4.2 The Lyα–line in Al at solid state density

Earlier experiments on the Lyα–line in Al12+ at solid state
density [18,19] were subject to self-absorption in the cooler
and less dense surface regions of the target. This can
be prevented by using thin (to reduce absorption) target
layers with sharp boundaries (to enhance homogeneity).
For that purpose a 25 nm Al target layer was embed-
ded in solid carbon at depths ranging from d = 25 nm
to d = 400 nm [20]. With increasing depth the expan-
sion of the Al layer is suppressed and the homogeneity of
the Al plasma is improved. In Figures 15 and 16 we com-
pare with an experiment (solid curve) at d = 400 nm
and kBT = 500 eV from which the underground has
been subtracted. The simulated Lyα–line (dashed curve)
and the line with the approximations QSA for the ions
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Fig. 15. Normalized spectra of the Lyα–line in Al. The solid
curve is the measurement for a 25 nm layer after subtraction of
the underground. The theoretical curves (kBT = 500 eV, ne =
5 × 1023 cm−3) include the experimental resolution (0.9 eV),
the dashed curve is the DPSA simulation, the dashed-dotted
curve is the QSA for the ions and the IA for the electrons. The
dotted curve is the DPSA simulation redshifted by 2 eV.
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Fig. 16. As in Figure 15 for ne = 8 × 1023 cm−3.

and IA for the electrons (dashed-dotted curve) are folded
with the experimental resolution (0.9 eV, FWHM) and
compared with the experimental line assuming densities
ne = 5 × 1023 cm−3 and 8 × 1023 cm−3 in Figures 15
and 16, respectively. The criteria for the classical nonrela-
tivistic treatment of the plasma and the use of the dipole
approximation in equation (2.1) are fulfilled, see Figure 2.
At ne = 8×1023 cm−3 the plasma parameter for the Al13+
ions is Γ = 3.16, the ratio ω0/ωp,i ≈ 2 justifies the calcu-
lation of the microfield in a superposition of OCP’s, see
Figure 4. The approximations yield narrower shapes than
the simulations, which were normalized to the area under
the experimental curves. The position of the simulated
line must be redshifted by 2 eV. This is the dense plasma
line shift (DPLS, Ref. [10], Ch. II 5b) due to the shielding
of the electron-nucleus interaction by the plasma particles.
Assuming a Debye-shielded interaction instead of the r−1-
Coulomb potential first-order perturbation yields a shift
of the required magnitude. A comparison of Figures 15
and 16 allows to conclude that the remaining uncertainty
in the determination of the density of the target is of order
1 × 1023 cm−3.
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5 Conclusions

We have presented a model that works without some as-
sumptions which underly the conventional impact and
quasi-static approximations. In particular we

(i) account for the strong correlations among the ions
of the plasma;

(ii) resolve the time structure of the microfields;
(iii) account for radiator states including the continuum,

which are not directly involved in the transition;
(iv) allow for a nonlinear interaction between the radia-

tor and the plasma to all orders.

We do not only reproduce the impact and quasi-static ap-
proximations in the regimes of their validity but our simu-
lations cover a wide area in the density-temperature plane
where these approximations become doubtful or even fail.
We demonstrate this by a model calculation with a sinu-
soidal external field as well as for fluctuating microfields
obtained from MD simulations of plasmas. We compared
our model with recent experiments on Al targets and show
that the conventional approximations become marginal
under the prevailing conditions.

The quest for more exact treatments beyond the tra-
ditional approximations will become even more urgent in
connection with experiments at higher densities and tem-
peratures at the planned (X)FEL facilities.

A critical discussion of our results shows that the fol-
lowing improvements are desirable:

(i) the dipole approximation (2.1) for the interaction
of the microfield with the radiator suffices for the
present experiments [17,20], see Figure 2. In even
denser plasmas one must account for close collisions
between the radiator and the plasma particles with
a quadrupole term in the expansion of the inter-
action and finally with an exact treatment [14]. In
this connection we note that the electron-ion inter-
action has been studied recently by MD simulations
and in theoretical models like the hypernetted-chain-
approximation (HNC) [32];

(ii) because of the different time scales we have cal-
culated the fluctuations from the ionic and the
electronic component separately, see Figure 4. For
even stronger coupled plasmas with many-bound
electron-ion states, this becomes questionable. The
simulations of the radiator in a two-component
plasma is very time-consuming, however;

(iii) relativistic and spin effects beyond the simple fine
structure (2.4) can be taken into account by treating
the radiator with the Dirac equation [22];

(iv) the major He-like satellite is well separated from
the Lyα–line in the experiment [20]. However, there
will be closer satellites due to spectator electrons
in higher configurations, which may affect the “red”
shoulder of the line. For spectators in the continuum
this effect merges into the DPSL. The satellites im-
pose a challenge as they offer an additional tool to
determine the temperature of the plasma, see, e.g.
chapter 6.3 of reference [31]. For that purpose one

has to solve the multi-electron wave equation, for ex-
ample in the relativistic case the Dirac equation [33].
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